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Abstract We present a mathematical theory for a new type of quantum computer called a
duality quantum computer that is similar to one that has recently been proposed. We dis-
cuss the nonunitarity of certain circuits of a duality quantum computer. We then discuss the
relevance of this work to quantum operations and their convexity theory. This discussion is
based upon isomorphism theorems for completely positive maps.
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1 Introduction

In a recent paper, Gui Lu Long proposed a new type of quantum computer called a dual-
ity computer [7]. According to Long, a duality computer is much more powerful than an
ordinary quantum computer. In fact, according to Long, a duality computer can solve an
unstructured database search problem in logarithmic time and can solve NP-complete prob-
lems in polynomial time. Moreover, Long has presented proof-in-principle designs for two
possible duality computers. This indicates that if a general purpose quantum computer can
be constructed, then a duality computer can probably also be constructed. A.Y. Shiekh has
made a similar proposal [10].

Simply stated, a quantum computer is a series of quantum gates, represented by uni-
tary operators U1, . . . ,Un on a Hilbert space, that can be used to perform a computation
[1, 3, 6, 9]. An initial state ψ0 is input into the quantum computer and then evolves into
the output state ψ = Un · · ·U1ψ0. To gain information about the computation, we make a
measurement on the state ψ . If the measurement has m possible outcomes, then we obtain
one of these outcomes with a probability depending on the state ψ . This resulting outcome
gives information about ψ . In this paper we shall discuss a type of quantum computer that is
inspired by, but slightly different than, Long’s duality computer. We shall call this computer
a duality quantum computer.
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A duality quantum computer exploits the duality property that quantum systems can
behave like both waves and particles. If a quantum system evolves undisturbed then it acts
like a wave and when it is observed or measured it acts like a particle. Now a quantum
wave ψ can be decomposed into parts using slits or beam splitters, for example. The wave
parts or subwaves can move along separate paths and then be combined at which point
they interfere. The subwaves are identical to ψ except they are at different locations along
different paths. Because of these different locations, this does not violate the no cloning
theorem which says that an unknown quantum state cannot be cloned exactly.

A duality quantum computer is a quantum computer that admits two new operations, a
divider operator and a combiner operator. The divider operator decomposes the initial wave
function into subwaves that are attenuated copies of the initial wave evolving along different
paths. Each of the paths can contain quantum gates represented by unitary operators. After
the subwaves pass through the quantum gates they are collected together by the combiner
operator to form a final state. Finally, a measurement is performed on the final state to
gain information about the computation. These multiple paths cause additional parallelism
in a duality quantum computer and accounts for their superiority over ordinary quantum
computers.

This article provides mathematical details of some of the work in [7]. In particular, we
discuss the nonunitarity of certain circuits in a duality quantum computer. We then discuss
the relevance of this work to quantum operations and their convexity theory. This discussion
is based upon isomorphism theorems for completely positive maps [2, 9]. In this paper the
states of a quantum system will refer only to the internal wave functions and the position
part of the wave functions will not be displayed. In this way, the subwaves after a divider
operation is applied will be copies of the initial wave function except for an attenuation
factor.

2 Generalized Quantum Gates

Let H be a complex Hilbert space and let p = (p1, . . . , pn) be a probability distribution.
That is, pi > 0, i = 1, . . . , n, and

∑
pi = 1. We use the notation ‖p‖ = (

∑
p2

i )
1/2 and

write H⊕n
for

⊕n

i=1 Hi where Hi = H , i = 1, . . . , n. The divider operator Dp:H → H⊕n

is defined by

Dpψ = 1

‖p‖
n⊕

i=1

(piψ).

Thus, Dp maps ψ into attenuated copies of ψ . We think of each copy of H in H⊕n
as a

path. It is easy to check that Dp is a unitary operator from H onto its range R (Dp).
We next define the operator C:H⊕n → H by

C(ψ1 ⊕ · · · ⊕ ψn) =
n∑

i=1

ψi.

Although C is linear, it is not isometric. However, if we define Cp to be the restriction of
‖p‖C to R(Dp) then it is easy to show that Cp is an isometry and Cp = D∗

p . We call Cp

the combiner operator. Suppose we apply Dp and then a unitary operator Ui on each of the
paths, i = 1, . . . , n and finally apply Cp to obtain

ψ → Dpψ = 1

‖p‖ ⊕ (piψ) → 1

‖p‖ ⊕ (piUiψ) →
(∑

piUi

)
ψ.
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We call
∑

piUi a generalized quantum gate. Unlike an ordinary quantum computer, a dual-
ity quantum computer admits generalized quantum gates.

Denoting the set of generalized quantum gates on H by G(H), it is not hard to show that
G(H) is a convex set and it is proved in [5] that the extreme points of G(H) are precisely the
unitary operators on H . We conclude that except for a degenerate probability distribution,
no generalized quantum gate is unitary; that is, no proper generalized quantum gate is a
quantum gate. Stated in another way, except for the case of a single path, no duality quantum
computer can be described by an ordinary quantum computer. In a sense, a duality quantum
computer is a mixture of ordinary quantum computers.

An example of a generalized quantum gate occurs in the following vector selection al-
gorithm. Let ψ1, . . . ,ψN be an orthonormal basis for H and suppose we want to select a
marked but unknown vector ψk from among them. A quantum computer possess an or-
acle (black box) that recognizes ψk and the oracle is given by the unitary operator U

where Uψi = −(−1)δi,kψi . Let p be the probability distribution p = (1/2,1/2) and let
ψ = (N)−1/2

∑
ψi be the input state for a duality quantum computer. Form the generalized

quantum gate given by

‖p‖C(I ⊕ U)Dp = 1

2
IH + 1

2
U.

Since 1
2 (IH + U)ψi = δi,kψi we have that 1

2 (IH + U) = Pk where Pk is the projection onto
the one-dimensional subspace generated by ψk . Moreover, 1

2 (I + U)ψ = (N)−1/2ψk so the
duality quantum computer selects the marked vector ψk using a single query to the oracle.
This is the mechanism behind Long’s logarithmic time database search algorithm [7].

We have seen that G(H) is a convex set whose extreme points are the unitary operators
on H . Let B(H) be the set of bounded linear operators on H and let R

+G(H) be the positive
cone generated by G(H). That is,

R
+G(H) = {αA:A ∈ G(H),α ≥ 0}.

It is shown in [5] that if dimH < ∞, then a duality quantum computer can simulate any
operator on H ; that is B(H) = R

+G(H).
Suppose we have a duality quantum computer represented by the generalized quantum

gate
∑

piUi . If the input state is represented by a unit vector ψ , then presumably the output
state is represented by the unit vector

∑
piUiψ

/∥
∥
∥
∑

piUiψ

∥
∥
∥.

Notice that it was necessary to renormalize the vector
∑

piUiψ because
∑

piUi is not
unitary in general. Instead of a pure state, suppose we input a mixed state represented by
a density operator ρ. In accordance with the formalism of quantum mechanics, the divider
operator Dp will transform ρ to the state DpρD∗

p = DpρCp . Since

DpρCp

[⊕
(piφ)

]
= ‖p‖Dpρ

(∑
piφ

)
= ‖p‖Dpρφ =

⊕
(piρφ) =

(⊕
piρ

)
φ

we conclude that DpρD∗
p = ⊕

piρ. If we now apply the quantum gates
⊕

Ui along the
various paths we obtain

⊕
piUiρU ∗

i . Finally, applying the operator C gives
∑

piUiρU ∗
i .

The reader should note that Long does not admit gates of this form in his duality computer.
This is because of a different use of C and Cp in his derivations [8].
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The map E(ρ) = ∑
piUiρU ∗

i is called a quantum operation in the literature [1, 3, 6, 9].
One advantage of this approach is that E(ρ) is again a state so we do not have to renormalize.
Indeed, clearly E(ρ) is positive and we have that

tr[E(ρ)] = tr
(∑

piUiρU ∗
i

)
=

∑
pi tr(UiρU ∗

i ) =
∑

pi tr(ρ) = 1.

Quantum operations of the form E are also frequently used to describe noisy quantum chan-
nels and error correcting quantum codes. For further discussions concerning the quantum
operation E we refer the reader to [5, 8].

We now show that projective measurements can be directly incorporated into a duality
quantum computer. To be precise, we show that a projective quantum measurement can be
performed using a generalized quantum gate.

A general quantum operation has the form E(ρ) = ∑
AiρA∗

i where Ai are arbitrary
operators on H satisfying

∑
A∗

i Ai = IH . If the Ai are projection operators Pi satisfying∑
Pi = IH , then E is called a projective measurement. Notice that a generalized quantum

gate also gives a quantum operation because we can write

E(ρ) =
∑

piUiρU ∗
i =

∑√
piUiρ

√
piU

∗
i

where
∑

(
√

piUi)
∗(

√
piUi) =

∑
piU

∗
i Ui =

∑
piIH = IH .

Theorem 2.1 [5] Let dimH < ∞ and let E(ρ) = ∑
PiρPi be a projective measurement.

Then there exists a generalized quantum gate
∑

piUi such that E(ρ) = ∑
piUiρU ∗

i .

Proof We shall employ the unitary freedom theorem [2, 9] which states that two quantum
operations E(ρ) = ∑

AiρA∗
i and F(ρ) = ∑

BiρB∗
i coincide if and only if there exists a

unitary matrix [ujk] such that Ej = ∑
k ujkFk for all i, j . Letting i = √−1, the discrete

Fourier transform is given by the unitary n × n matrix [n−1/2e2πijk/n]. Define the unitary
operators Uj , j = 1, . . . , n, by

Uj =
n∑

k=1

e2πijk/nPk.

We can then write

1√
n

Uj =
n∑

k=1

1√
n

e2πijk/nPk.

Applying the unitary freedom theorem, we conclude that

E(ρ) =
∑

PiρPi =
∑(

1√
n

Ui

)

ρ

(
1√
n

Ui

)∗
=

∑ 1

n
UiρU ∗

i . �

3 Matrix Endomorphisms

In preparation for a study of quantum operations this section considers the more general
concept of matrix endomorphisms. Our discussion is similar to the work of Choi [2]. In this
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and the next section we shall employ Dirac notation which denotes the inner product by
〈φ | ψ〉 and the outer product by |φ〉〈ψ |.

In the sequel we shall only consider a finite-dimensional Hilbert space H with
dimH = n. We can identify the set of bounded operators B(H) with the set of n × n

complex matrices Mn. We denote the standard basis for H = C
n by |i〉, i = 1, . . . , n. The

set of endomorphisms (linear transformations) from Mn into Mn is denoted by End(Mn).
The set End(Mn) is a complex linear space in the usual way. The matrix units Eij = |i〉〈j |
form a basis for Mn and for E,F ∈ End(Mn) we define the inner product

〈E | F〉 =
∑

i,j

tr(E(Eij )
∗F(Eij )).

For i, j, k, � = 1, . . . , n, we define Sijk� ∈ Mn2 by |i〉|j〉〈k|〈�|. It is well known that
{Sijk�} forms an orthonormal basis for Mn2 under the Hilbert-Schmidt inner product

〈A | B〉 = tr(A∗B).

For i, j, k, � = 1, . . . , n we define Tijk� ∈ End(Mn) by

Tijk�(A) = |i〉〈k|A|j〉〈�|.
It is easy to show that {Tijk�} forms an orthonormal basis for End(Mn). Define the map
∨:Mn2 → End(Mn) by S∨

ijk� = Tijk� and extend by linearity. Then ∨ becomes a unitary
transformation from Mn2 onto End(Mn). We denote the inverse of ∨ by ∧: End(Mn) →
Mn2 . A straightforward calculation shows that

E∨ =
∑

i,j,k,�

〈j |〈i|E|�〉|k〉Tijk�

and we then obtain the following result.

Lemma 3.1 For E ∈ End(Mn) we have that

Ê =
∑

i,j,k,�

〈i|E(Ekj )|�〉Sijk�.

Proof Since

E =
∑

〈Tijk� | E〉Tijk� =
∑

i,j,k,�

∑

r,s

tr[Tijk�(Ers)
∗E(Ers)]Tijk�

=
∑

i,j,k,�

∑

r,s

tr[(|i〉〈k||r〉〈s||j〉〈�|)∗E(Ers)]Tijk�

=
∑

i,j,k,�

∑

r,s

δkrδsj tr[|�〉〈i|E(Ers)]Tijk�

=
∑

tr[|�〉〈i|E(Ekj )]Tijk� =
∑

〈i|E(Ekj |�〉Tijk�

taking ∧ of both sides gives the result. �

The reason that the unitary transformation ∧: End(Mn) → Mn2 is useful follows from
the next result.
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Theorem 3.2 If E ∈ End(Mn) has the form E(A) = EAF for fixed E,F ∈ Mn, then
Ê = E ⊗ F .

Proof Applying Lemma 3.1 we obtain

Ê =
∑

〈i|E(Ekj )|�〉Sijk� =
∑

〈i|EEkjF |�〉Sijk� =
∑

〈i|E|k〉〈j |F |�〉|i〉|j〉〈k|〈�|

=
∑

j,k,�

〈j |F |�〉E|k〉|j〉〈k|〈�| =
∑

j,�

〈j |F |�〉E ⊗ |j〉〈�|

= E ⊗
∑

j,�

〈j |F |�〉|j〉〈�| = E ⊗ F.
�

Some further applications of this work can be found in [4].

4 Quantum Operations

As a slight extension of the discussion in Sect. 3, a quantum operation on H is an endomor-
phism E ∈ End(B(H)) of the form

E(A) =
N∑

i=1

EiAE∗
I

where Ei ∈ B(H) satisfy
∑

E∗
i Ei = IH . The terms of the finite sequence {Ei} are called

operational elements of E and we write E ≈ {Ei}. If E ≈ {Ei} and E ≈ {Fj }, we write
{Ei} ∼ {Fj }. Then ∼ is an equivalence relation. Moreover, by the unitary freedom theorem
[2, 9], {Ei} ∼ {Fj } if and only if there exists a unitary matrix [uij ] such that Ei = ∑

j uijFj

for all i. We say that a quantum operation E is normal, positive, or projective if E ≈ {Ei}
where Ei are normal, positive, or projection operators, respectively. If Ei = √

piUi where
Ui are unitary and pi ≥ 0,

∑
pi = 1 then E is a unitary quantum operation. Of course,

unitary quantum operations correspond to generalized quantum gates and have the form

E(A) =
∑

piUiAU ∗
i .

If the Ei mutually commute, then E is commutative.
If E ≈ {Ei} is projective, then E corresponds to a projection-valued measure and we have∑
Ei = I . In this case E is commutative. If E ≈ {Ei} is positive, then E corresponds to a

positive operator-valued measure {E2
i } where

∑
E2

i = IH . Conversely, if {Ei} is a positive
operator-valued measure, then E ≈ {E1/2

i } is a positive quantum operation of considerable
importance [9]. If {Ei} ∼ {Fj } then clearly, Ei mutually commute if and only if Fj mu-
tually commute. In general, we can have {Ei} ∼ {Fi} where the Ei are normal, positive,
projective or unitary, respectively and the Fj are not of these types, respectively. Thus, for
example, when we say that E is normal we mean that there exists normal operators Ei such
that E ≈ {Ei}. It is then possible that E ≈ {Fj } where the Fj are not normal.

Lemma 4.1 If Ai �= 0 are positive and Bi �= 0 are projections then {A1, . . . ,An} ∼
{B1, . . . ,Bn} if and only if {A1, . . . ,An} is a permutation of {B1, . . .Bn}.
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Proof By the unitary freedom theorem, {A1, . . . ,An} ∼ {B1, . . .Bn} implies that Ai =∑
uijBj for some unitary matrix [uij ]. Since Ai is positive, uij ≥ 0 for all j . If uij �= 0,

then by unitarity uik = 0 for k �= j . But then by unitarity, uij = 1. Hence, [uij ] is a permuta-
tion matrix and the result follows. �

Lemma 4.2 If Pi are one-dimensional projections then {A1, . . . ,An} ∼ {P1, . . . ,Pn} if and
only if Ai commute, are normal and tr(A∗

i Ak) = δik .

Proof If {A1, . . . ,An} ∼ {P1, . . . ,Pn}, then Ai = ∑
uijPj for a unitary matrix [uij ]. Hence,

Ai commute and are normal. Moreover,

tr(A∗
i Ak) = tr

(∑

j

uijPj

∑

�

uk�P�

)

= tr

(∑

j

uijukjPj

)

=
∑

j

uijukj = δik.

Conversely, suppose Ai commute, are normal and tr(A∗
i Ak) = δik . Since the Ai are normal

and commute, they are simultaneously diagonalizable so we can represent them by

Ai = diag(ai1 , . . . , ain ).

Now the vectors ai = (ai1 , . . . , ain ) form an orthonormal basis because
tr(A∗

i Ak) = δik . Letting Pi be the one-dimensional projection onto the ith-coordinate,
i = 1, . . . , n, we have that Ai = ∑

aijPj . Since [aij ] forms a unitary matrix, it follows
that {Ai, . . . ,An} ∼ {P1, . . . ,Pn}. �

Let Q(H) denote the set of quantum operations on H . We denote the sets of unitary,
positive and projective quantum operations on H by Qu(H), Qpos(H), and Qpro(H), respec-
tively. It is easy to check that Q(H), Qu(H) and Qpos(H) are convex sets, while Qpro(H) is
not convex. It appears that characterizing the set of extreme points Ext[Q(H)] of Q(H) is
very difficult. As we shall see, the situation is much simpler for Qu(H) and we have some
partial results and a conjecture for Qpos(H). Theorem 2.1 shows that Qpro(H) ⊆ Qu(H).
We conjecture that Qpos(H) ⊆ Qu(H). If this conjecture is true, it would show that a duality
quantum computer can measure itself using a positive operator-valued measurement.

The conjecture Qpos(H) ⊆ Qu(H) would follow if we could show that the extreme points
of Qpos(H) are precisely the elements of Qpro(H). Indeed, since dimH < ∞ it would follow
that every E ∈ Qpos(H) is a convex combination of elements of Qpro(H). Since Qpro(H) ⊆
Qu(H), it would then follow that Qpos(H) ⊆ Qu(H). For any E ∈ Qpos(H) we have that
E ≈ {Ei} where Ei are positive operators on H . Since

∑
E2

i = In we have that 0 ≤ Ei ≤ IH

for all i. Now operators E that satisfy 0 ≤ E ≤ IH are called effects. We denote the convex
set of effects on H by E(H) and the set of projection operators on H by P(H). The next
result is well known and is an indication that the conjecture

Qpro(H) = Ext[Qpos(H)]
might be true.

Theorem 4.3 P(H) = Ext[E(H)].

Proof Suppose P ∈ P(H) and P = λE + (1 − λ)F where E,F ∈ E(H) and 0 < λ < 1. If
Pφ = φ with ‖φ‖ = 1 we have that

1 = 〈Pφ,φ〉 = λ〈Eφ,φ〉 + (1 − λ)〈Fφ,φ〉.
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This implies that Eφ = Fφ = φ. If Pψ = 0 with ‖ψ‖ = 1, then

0 = 〈Pψ,ψ〉 = 〈Eψ,ψ〉 + (1 − λ)〈Fψ,ψ〉.
This implies that Eψ = Fψ = 0. Hence, E = F = P and we conclude that P(H) ⊆
Ext[E(H)]. To prove the opposite inclusion, for E ∈ E(H) we have that E2 ≤ E ≤ 2E

so that 2E − E2 ≥ 0. Also

0 ≤ (I − E)2 = I − 2E + E2

so that 2E − E2 ≤ I . Hence, E1 = 2E − E2 ∈ E(H). Letting E2 = E2 ∈ E(H) we have that
E = 1

2 E1 + 1
2E2. If E /∈ P(H), then E �= E2 and hence E2 �= E and E1 �= E. Therefore,

E /∈ Ext[E(H)] and it follows that P(H) = Ext[E(H)]. �

Although the next result is not surprising, its proof is not completely trivial.

Theorem 4.4 The elements of Ext[Qu(H)] are precisely those of the form E(A) = UAU ∗
where U is unitary.

Proof Suppose E ∈ Ext[Qu(H)]. Since E ∈ Qu(H) we have that E(H) = ∑
piUiAU ∗

i and
since E is extremal it follows that UiAU ∗

i = U1AU ∗
1 for all i. Therefore, E(A) = U1AU ∗

1 .
Conversely, suppose that UAU ∗ = ∑

piUiAU ∗
i . Letting A = Pψ we have that PUψ =∑

piPUiψ . Applying Theorem 4.3 we conclude that PUiψ = PUψ for all i. In particular,
PU1ψ = PUψ . Hence, there exists an αψ ∈ C with |αψ | = 1 such that U1ψ = αψUψ . Now
let φ be a vector satisfying ‖φ‖ = 1 and φ ⊥ ψ . Then as before there exists an αφ ∈ C with
|αφ | = 1 such that U1φ = αφUφ. Letting γ = (φ + ψ)/

√
2 we have that

U1

(
ψ + φ√

2

)

= αγ U

(
ψ + φ√

2

)

.

Hence,

αψUψ + αφUφ = U1(ψ + φ) = αγ U(ψ + φ) = αγ Uψ + αγ Uφ.

It follows that αψ = αφ = αγ . Therefore, there exists an α1 ∈ C with |α1| = 1 such that
U1 = α1U . Similarly, there exist αi ∈ C with |αi | = 1 such that Ui = αiU for every i. We
conclude that UiAU ∗

i = UAU ∗ for every i. �

The next theorem is a partial result toward proving that Qpro(H) = Ext[Qpos(H)].

Theorem 4.5 Qpro(H) ⊆ Ext[Qpos(H)]

Proof Let E,F ∈ Qpro(H) and G ∈ Qpro(H) with E ≈ {Ei}, F ≈ {Fj } and G ≈ {Pk}. We
can assume that Ei,Fj ,Pk �= 0 for all i, j, k. We can also assume without loss of generality
that Ei �= αEi′ and Fj �= βFj ′ for any i �= i ′, j �= j ′. Let 0 < λ < 1 and suppose that G =
λE + (1 − λ)F . We then have that

∑
PiAPi =

∑√
λEiA

√
λEi +

∑√
1 − λFiA

√
1 − λFi.

By the unitary freedom theorem there exists a unitary matrix [uij ] such that

[
√

λE1 · · · √
λEn

√
1 − λF1 · · · √

1 − λFm ]T = [uij ][P1 · · · Pr0 · · · 0 ]T .
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Notice that n + m ≥ r because otherwise 0 = ∑
j uijPj which is impossible. Since√

λEi,
√

1 − λFi ≥ 0, uij ≥ 0 for all i and for j = 1, . . . , r . For j, k = 1, . . . , r , j �= k, we
have that

∑
i uijuik = 0. Hence, if uij �= 0 then uik = 0, j �= k, j, k = 1, . . . , r for every i.

We can reorder the Ei if necessary so that
√

λEi = uiiPi . It follows that n ≤ r . Since

IH =
n∑

i=1

E2
i = 1

λ

n∑

i=1

u2
iiPi

we have that n = r and uii = √
λ. Hence, Ei = Pi . Continuing, we can reorder the Fi if

necessary so that
√

1 − λFi = un+i,n+iPi .

Again, m ≤ r and we have that

IH =
m∑

i=1

F 2
i = 1

1 − λ

m∑

i=1

u2
n+i,n+iPi .

Hence, m = r and un+i,n+i = √
1 − λ. Hence, Fi = Pi . Therefore, E = F = G so

G ∈ Ext[Qpos(H)]. �

Because of Theorem 4.5, in order to show that Qpro(H) = Ext[Qpos(H)] we only need to
show that Ext[Qpos(H)] ⊆ Qpro(H). To prove this latter inclusion we believe that the next
result will be useful. This result involves the map ∧: End(Mn) → Mn2 discussed in Sect. 3.
In our present usage we consider ∧ to be a map from Q(H) to B(H ⊗ H).

Theorem 4.6 (a) If E ∈ Q(H) has the form E(A) = ∑
EiAE∗

i , then Ê = ∑
Ei ⊗ E∗

i .
(b) The map ∧:Q(H) → B(H ⊗ H) given by Ê = ∑

Ei ⊗ E∗
i where E ≈ {Ei} is well-

defined, convex and injective.

Proof (a) This follows directly from Theorem 3.2. (b) The map ∧ is well-defined because
if E ≈ {Ei} ∼ {Fi}, then Fi = ∑

uijEj for a unitary matrix [uij ]. But then

∑

i

Fi ⊗ F ∗
i =

∑

i

∑

j

uijEj ⊗
∑

k

uikE
∗
k =

∑

j,k

∑

i

uijuikEj ⊗ E∗
k

=
∑

j,k

δjkEj ⊗ E∗
k =

∑

j

Ej ⊗ E∗
j .

The map ∧ is injective because it is the restriction of the injective map ∧ to Q(H). Since
Q(H) is convex and ∧ is linear on End(B(H)) we conclude that ∧:Q(H) → B(H ⊗ H) is
convex. �

Corollary 4.7 If
∑

E∗
i Ei = ∑

F ∗
i Fi = IH and

∑
Ei ⊗ E∗

i = ∑
Fi ⊗ F ∗

i then Fi =∑
j uijEj for a unitary matrix [uij ].

We now present two partial results which show that Ext[Qpos(H)] ⊆ Qpro(H) holds in
special cases.
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Theorem 4.8 If E ∈ Qpos(H)\Qpro(H) and E ≈ {Ei} where the Ei mutually commute, then
E /∈ Ext[Qpos(H)].

Proof We shall prove this result for the case H = C
3, B(H) = M3, and the higher dimen-

sional cases are similar. Assume that E ≈ {E1,E2,E3}. Since the Ei mutually commute we
can assume that they are diagonal, Ei = diag(ai, bi, ci), i = 1,2,3, where

a2
1 + a2

2 + a2
3 = b2

1 + b2
2 + b2

3 = c2
1 + c2

2 + c2
3 = 1.

Let a be the unit vector a = (a1, a2, a3) ∈ C
3 and define b, c similarly. We then have that

3∑

i=1

Ei ⊗ Ei =
3∑

i=1

diag(aidiag(ai, bi, ci), bidiag(ai, bi, ci), cidiag(ai, bi, ci))

= diag(1, a · b, a · c, a · b,1, b · c, a · c, b · c,1).

Since E1,E2,E3 are not all projections, at least one of the inner products a · b, a · c or b · c
is strictly between 0 and 1. Say, a · b = α with 0 < α < 1. Then there exists an ε > 0 such
that

0 < α − ε < α < α + ε < 1.

We can now write

3∑

i=1

Ei ⊗ Ei = 1

2
diag(1, a · b + ε, a · c, a · b + ε,1, b · c, a · c, b · c,1)

+ 1

2
diag(1, a · b − ε, a · c, a · b − ε,1, b · c, a · c, b · c,1).

Now there exist unit vectors a′, b′ with nonnegative entries such that a′ · b′ = a · b + ε,
a′ · c = a · c, b′ · c = b · c and similarly there exist unit vectors a′′, b′′ with nonnegative
entries such that a′′ · b′′ = a · b − ε, a′′ · c = a · c, b′′ · c = b · c. Then letting c′ = c′′ = c and
Fi = diag(a′

i , b
′
i , c

′
i ), Gi = diag(a′′

i , b
′′
i , c

′′
i ), i = 1,2,3 we have that

3∑

i=1

Ei ⊗ Ei = 1

2
diag(1, a′ · b′, a′ · c′, a′ · b′,1, b′ · c′, a′ · c′, b′ · c′,1)

+ 1

2
diag(1, a′′ · b′′, a′′ · c′′, a′′ · b′′,1, b′′ · c′′, a′′ · c′′, b′′ · c′′,1)

= 1

2

3∑

i=1

Fi ⊗ Fi + 1

2

3∑

i=1

Gi ⊗ Gi.

It follows from this work that for
∑n

i=1 Ei ⊗ Ei in M3 ⊗ M3 where the Ei mutually com-
mute, there exist commuting positive matrices F1,F2,F3 such that

n∑

i=1

Ei ⊗ Ei =
3∑

i=1

Fi ⊗ Fi.

It follows from Theorem 4.6 that E /∈ Ext[Qpos(H)]. �
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Theorem 4.9 If E ∈ Qpos(H) \Qpro(H) and E ≈ {Ei} where at least one of the Ei is invert-
ible, then E /∈ Ext[Qpos(H)].

Proof We shall prove this result for the case H = C
2, B(H) = M2 and the higher dimen-

sional cases are similar. We shall also assume that E ≈ (E1,E2,E3) where E2
1 +E2

2 +E2
3 =

IH and E1 is invertible. Since E1 is invertible there exists an ε > 0 such that
√

εI ≤ E1.
Now we can write

3∑

i=1

Ei ⊗ Ei = 1

2

[

(1 − ε)

3∑

i=1

Ei ⊗ Ei + εIH ⊗ IH

]

+ 1

2

[

(1 + ε)

3∑

i=1

Ei ⊗ Ei − εIH ⊗ IH

]

.

We have that

(1 − ε)

n∑

i=1

E2
i + εIH = IH .

To treat the second term, we may assume that E1 = diag(a, b), where 0 < a,b < 1. Then

(1 + ε)E1 ⊗ E1 − εIH ⊗ IH = (1 + ε)diag(a2, ab, ab, b2) − εdiag(1,1,1,1)

= diag((1 + ε)a2 − ε, (1 + ε)ab − ε, (1 + ε)ab − ε, (1 + ε)b2 − ε).

Now a2, b2 > ε so (1 + ε)a2 − ε, (1 + ε)b2 − ε, (1 + ε)ab − ε > 0. Let

c =
√

(1 + ε)a2 − ε, d =
√

(1 + ε)b2 − ε, e = (1 + ε)ab − ε.

Since 2ab ≤ b2 + a2 we have that

e2 = [(1 + ε)ab − ε]2 ≤ [(1 + ε)a2 − ε][(1 + ε)b2 − ε] = c2d2.

Now there exist vectors (a1, a2), (b1, b2) ∈ C
2 such that ai, bi ≥ 0, i = 1,2, a2

1 + a2
2 =

c2, b2
1 + b2

2 = d2 and 〈(a1, a2), (b1, b2)〉 = e. Define F,G ∈ M2 by F = diag(a1, b1),
G = diag(a2, b2). Then

(1 + ε)E1 ⊗ E1 − εIH ⊗ IH = diag(c2, e, e, d2)

= diag(a2
1, a1b1, a1b1, b

2
1) + diag(a2

2, a2b2, a2b2, b
2
2)

= F ⊗ F + G ⊗ G.

Therefore,

(1 + ε)(E1 ⊗ E1 + E2 ⊗ E2 + E3 ⊗ E3) − εIH ⊗ IH

= F ⊗ F + G ⊗ G + (1 + ε)(E2 ⊗ E2 + E3 ⊗ E3)

and

F 2 + G2 + (1 + ε)(E2
2 + E2

3) = diag(c2, d2) + (1 + ε)(E2
2 + E2

3)

= (1 + ε)(E2
1 + E2

2 + E2
3) − εIH

= (1 + ε)IH − εIH = IH .
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Finally, if

(1 − ε)

(
n∑

i=1

Ei ⊗ Ei

)

+ εIH ⊗ IH =
3∑

i=1

Ei ⊗ Ei

then
∑

Ei ⊗ Ei = IH . It follows that E /∈ Ext[Qpos(H)]. �

References

1. Brooks, M.: Quantum Computing and Communications. Springer, London (1999)
2. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290

(1975)
3. Gruska, J.: Quantum Computing. McGraw-Hill, London (1999)
4. Gudder, S.: Quantum mechanics on finite groups. Found. Phys. 36, 1160–1192 (2006)
5. Gudder, S.: Mathematical theory of duality quantum computers. Quant. Inf. Proc. 6, 37–48 (2007)
6. Hirvensalo, M.: Quantum Computing. Springer, Berlin (2001)
7. Long, G.L.: The general quantum interference principle and the duality computer. arxiv: quant-ph/

0512120 (2005)
8. Long, G.L.: Mathematical theory of the duality computer in the density matrix formalism. arxiv: quant-

ph/0605087 (2006)
9. Nielsen, M., Chuang, J.: Quantum Computation and Quantum Information. Cambridge University Press,

Cambridge (2000)
10. Shiekh, A.Y.: The role of quantum interference in quantum computing. Int. J. Theor. Phys. 45, 1646–

1648 (2006)


	Duality Quantum Computers and Quantum Operations
	Abstract
	Introduction
	Generalized Quantum Gates
	Matrix Endomorphisms
	Quantum Operations
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


